
NASA CR-

AEROPHYSICS RESEARCH CORPORATION JTN-10
TECHNICAL NOTE VOLUME I

(NASA-CR-141596) THE DLG PROCESSOR: A DATA N75-17122
MANAGEMENT EXECUTIVE FOR THE ENGINEERING
DESIGN INTEGRATION (EDIN) SYSTEM. VOLUME 1:
ENGINEERING DESCRIPTION AND UTILIZATION Unclas
.MANUAL Final Report, Jun. (Aerophysics G3/61 09643

THE DLG PROCESSOR -
A DATA MANAGEMENT EXECUTIVE FOR THE
ENGINEERING DESIGN INTEGRATION (EDIN) SYSTEM

VOLUME I - ENGINEERING DESCRIPTION AND UTILIZATION MANUAL

By: C. R. Glatt and W. N. Colquitt

Prepared for:

NATIONAL AERONAUTICS.AND SPACE ADMINISTRATION
Johnson Spacecraft Center
Houston, Texas 77058

Reproduced by

December 1974 NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

~ su, v

1. Report No. T 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-
4.Title and Subtie THE DLG PROCESSOR - A DATA MANAGEMENT . ncport Date

4EXECUTIVE FOR THE ENGINEERING DESIGN INTEGRATION ecember i974
(EDIN) SYSTEM VOLUME I - ENGINEERING DESCRIPTION 6. Performing Organization Code

AND UTILIZATION MANUAL

7. Author(s) C. R. Glatt and W. N. Colquitt 8. Performing Organization Report No.

JTN-10 -Volume I

10. Work Unit No.

9. Performing Organization Name and Address

Aerophysics Research Corporation 11. Contract or Grant No.
Houstoni Texas 77058

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address CPFF June 1973, Dec ' 7
NATIONAL AERONAUTICS AND SPACE ADMINISTRATIONJohnson!Space Cente 14. Sponsoring Agency Code
Johnson Space Center
Houston!, Texas 77058 EX 4

15. Supplementary Notes

Final Rport

16. Abstract The DLG processor is a Univac 1100 series computer program

designed to read, modify, manipulate, and replace symbolic images.
DLG is controlled by a set of user supplied directives and operates
from a data base of stratified information which can be merged with
the symbolic images. Data bases can be constructed and maintained
in the mass storage media using the DLG directive language.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

EDIN, language, data base, storage Unclassified - Unlimited

retrieval, data management

19. Security Classif. (of this report) 20. Security Cla.sif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 3]

For sale by the National Technical Information Service, Springfield, Virginia 22151

AEROPHYSICS RESEARCH CORPORATION JTN-10
TECHNICAL NOTE VOLUME I

THE DLG PROCESSOR -
A DATA MANAGEMENT EXECUTIVE FOR THE
ENGINEERING DESIGN INTEGRATION (EDIN) SYSTEM

VOLUME I - ENGINEERING DESCRIPTION AND UTILIZATION MANUAL

By: C. R. Glatt and W. N. Colquitt

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Johnson Spacecraft Center
Houston, Texas 77058

December 1974

PREFACE

This report describes a computer program called the DLG Processor
- A Data Management Executive for the Engineering Design Integra-
tion (EDIN) System. The program was written in support of NASA
Contract NAS9-13584, "Extended Optimal Design Integration (Ex-
tended ODIN) Computer Program." The study was conducted during
the period from June 1973 through December 1974, with funds pro-
vided by the National Aeronautics and Space Administration,
Johnson Spacecraft Center, Engineering Analysis Division. The
contract was monitored by Mr. Robert W. Abel. The re-
port is presented in two volumes:

Volume I - Engineering Description and Utilization
Manual

Volume II - Programmers' Manual

The report specifically describes a user-developed data processor
which is integrated with the Univac 1100 executive system and is
interfaced to the EDIN data base.

iii

TABLE OF CONTENTS
Page

SUMMARY 1

INTRODUCTION....................... 3

ENGINEERING DESCRIPTION 5................5

Concepts and Definitions 7
Language Structure and Usage...........................8
Construction and Maintenance of Data Bases 9
Construction of Partial Run Streams...................13

Execution of a Sequence of Technology Programs...13
Conditional Branching.............................13

Retrieval of Design Information.......................14
Replacement Command 14
Insert Command...16
Comment Command....................................17

Report Generation 17
Technology Module Interface Package...................18

PROGRAM UTILIZATION. 20

DLG Usage 20
Control Statement 20
Option Specifications.........................20
Syntax Definition.................................21
Descriptions of Control Directives.................22

Examples 25

CONCLUDING REMARKS...29

Data Base 29
Design Simulations..29
Comparison with other Processors.... 29
Compatible Developments.............................. 30

REFERENCES 31

REGCEDWI G PAGE BLAkN NOT FILvED

v

Preceding pageblank\

THE DLG PROCESSOR

A DATA MANAGEMENT EXECUTIVE FOR

THE ENGINEERING DESIGN INTEGRATION SYSTEM

VOLUME I - ENGINEERING DESCRIPTION AND UTILIZATION MANUAL

By: C. R. Glatt and W. N. Colquitt

SUMMARY

The DLG Processor is an 1100 series Exec 8 computer program
designed to read, modify, manipulate and replace symbolic images.
DLG is controlled by a set of user supplied directives (or
language elements) which provide the basic capabilities of the
DLG Processor as follows:

.1. Language elements for the construction and maintenance
of a data base which is independent of any other com-
puter program.

2. Language elements for processing information generated
by other computer programs.

3. Language elements for automatically retrieving data
base information as input to any other computer pro-
gram.

4. A simple technique for editing and interrogating the
data base and for generating summary reports of data
base information.

The DLG processor can be used to form a linkage between engineer-
ing technology modules through the manipulation of common infor-
mation in the data base. The use of the system for this purpose
requires the prior assimilation of the following basic components:

1. A library of independent technology programs including
the DLG processor.

2. The control card sequences for the execution of the
.technology modules.

3. The setup data for the technology modules which perform
the desired analysis function.

1

The basic components are often available without additional
program development. The program sequencing and intercommunica-
tion required to integrate the basic components into a design
simulation are established using the Exec 8 run stream concept.
(See Reference 1) Data base requests for common information
are established by the formation of skeletonized data elements
containing execution control cards and/or technology module in-
put data. The skeleton elements containing DLG directives are
processed or filled out by the DLG Processor using data base
information. The result of the preprocessing is a partial run
stream which is acceptable to Exec 8 for performing.computerized
design tasks.

2

INTRODUCTION

The EDIN system provides a balance of data management techniques
which consider the inherent capabilities of the computer opera-
ting system, past efforts in the storage and retrieval of
stratified data and the recent development of some flexible
paging techniques for the transfer of information between the
computer core and the mass storage of the computer. The Univac
Exec 8 system provides the resources for the storage of large
complex data files, for the storage and retrieval of the files
and for the.catalogting protection and backup of the files.
The executive system has several processors with instruction
sets for manipulating the data retained in mass storage. A
limitation on the operating system capabilities arises in access-
ing the subfile level of information in the system files once
the file is addressed.

The EDIN data management system is designed to subdivide the
files in a manner that will allow the data which is retained in
mass storage to be accessed at any level from the single para-
meter level to a large matrix of data. Rather than constructing
an extensive single computer program that attempts to be every-
thing to everyone, the EDIN data management system provides a
three-level data management capability. This approach permits.
the individual designer using the system to make his own decisions
with regard to the storage method and techniques. It also per-
mits the flexibility of using existing data sources not specifi-
cally created for EDIN.

The three levels of the EDIN data management system are built
upon one another as illustrated in figure 1. The lowest level
deals with the interface between the data in mass storage and
the computer operating system. The file level of the data manage-
ment system is provided by the Exec 8 software and consists of
the file utility processor FURPUR, the file administration
processor SECURE and other system level processors. The system
processors are accessed using Exec 8 control statements. There-
fore, file level software may be used directly by the designer
for transmitting large structured blocks of data or the files
themselves to be accessed by the programmer who seeks economy
above all else. The file level constitutes the foundation.for
all higher level data management components.

The second level of the EDIN data management system provides the
mechanism whereby the files can be organized into blocks of
data called pages. Pages of information can be organized in a
number of ways and names can be given to each page. A pointer

system or directory is maintained by a Fortran callable software

3

USER

DLG PROCESSOR
USER. CONTROL

LEVEL 3 DATA BASE INTERFACE

DMAN SOFTWARE
PROGRAMMER CONTROL

LEVEL 2 DATA BASE INTERFACE
EXEC 8 OPERATING SYSTEM

LEVEL 1 DATA BASE INTERFACE .

CORE DISK DRUM TAPE PRINTOUT CARD

FIGURE 1 EDIN DATA MANAGEMENT SYSTEM,

package, called DMAN, a subroutine utility package maintained in
the EDIN library.

The third and highest level of the data management system is

provided to make the system more usable to the designer who may
not be a programmer. The capability is provided in the DLG

processor which is designed to maintain a data base of stratified
information, the stratified data can be selectively accessed
and merged with the input stream of the EDIN technology programs.

This level also provides the interactive language structure
which allows the designer to sit at a remote terminal and inter-

act with the data base directly as he develops a design. The

DLG processor also contains routines for processing the output
from the technology programs for the storage of design informa-
tion in the data base.

Although the user may access the data base through any of the

three levels, it is the lowest level maintained by the Exec 8

system which actually stores and retrieves the data. Exec 8

handles all of the underlying data management functions including
file assignments, file directories and maintenance and security
procedures as well as the data block transfer to and from mass
storage. The Exec 8 system is discussed in the previous section
and a thorough treatment of the first level data management is

pr6vided by Univac in the appropriate. User Documentation.
The following discussion deals with the second and
third level of the EDIN data management system.

Complete instructions for use of the DLG language elements in con-

junction with the basic EDIN components are presented herein. In
addition, an interface technique is described for allowing any

program in the library to update the data base. The technique
does not influence the stand-alone operation of the program.

ENGINEERING DESCRIPTION

The DLG procedure for implementing the linkage of the technology
modules is to read output data from one module, insert a selected
subset of the resulting data into a stratified data base and then
selectively extract this and other stored data for placement in-
to the input stream for other applications programs. The linkage
is illustrated in figure 2. The effect is to provide a unified

analysis involving several modules operating from a single source
of data. Repetition of execution sequences can be triggered by
looping criteria residing in the data base.

5

PARTIAL
RUN

STREAM A

DLG

0 DATA PRE- PROCESSOR

PROCESSING

MODIFIED
RUN

STREAM

NORMAL
OUTPUT

TECHNOLOGY
PROGRAM
EXECUTION

INTERFACE DATA
DATA BAS

DLG

DATA POST- PROCESSOR

PROCESSING

FIGURE 2 DLG PROCESSOR FUNCTIONS.

Concepts and Definitions

The following concepts and definitions which may be new to the
reader will be helpful in understanding this document:

Processor An absolute program element which is execu-
ted with a special Exec 8.processor control
statement:

@name eltl,elt2

and which is interfaced with the elements
named on the processor control statements.

Data Base File of information which is subdivided into
named pages of data accessible by the DLG
processor. Each page is further subdivided
into named parameters and arrays.

Technology Module An independent computer program which will
(Application receive or generate data base information.
Program)

Interrogation The process of retrieving information from
the data base. The.disposition of the
retrieved data is dependent upon the direc-
tive employed.

Directive A language element used to specify a DLG
(Also Command) Processor's action or function.

Data Management A class of DLG functions which control and
manipulate data base information. These
functions include the creation of data base
pages, the adding and defining information
in the data base, printing and many others.

Data Storage A special class of data management functions
which are designed specifically to store data
generated by a technology module.

Run Stream A sequence of data images which constitute
a computer run.

Partial Run A portion of a run stream which can be merged
Stream at any point in the run stream through an

@ADD control statement.

7

Language Structure and Usage

The language for controlling the DLG Processor consists of con-
trol directives which are summarized below:

'name' Replace name with information from the data base.

'ADD Replace specified information in the data base.

'CHANGE Change values in common IDLOG.

'COMMENT User description with null effect.
or

'CREATE Greate a new data base.

'CSF or Submit executive control statement.
'ER

'DBLIST Print the names of all random access data bases
on the data base file.

'DEFINE Place description in data base directory.

'FORMAT Format free data base information in place.

'INSERT Insert binary SDF data in place.

'ON Mode activation.

'OFF Mode suppression.

'PRINT Print data base information.

'USE Specify a circular data base search.

'UPDATE Update a specified data base.

Each language element is delimited by a pair of apostroDhes (') todistinguish DLG input from the technology module input data andexecution control cards in the run stream. For example, in the
language element,

'NAME........

NAME is the name of the command or directive (i.e. CREATE or ADD).The remaining information within the delimited region is ancillary
to the specific directive. The DLG Processor scans the partial runstream for delimited information and performs the function specifiedtherein.

8

The control directives provide the means by which data base stor-
age and retrieval functions can be performed. They command the
transfer of information from the analyst to the data base, from
the data base to the technology programs and from the technology
programs to the data base. In the transfer of information from
the analyst to the data base, the ADD, DEFINE and INSERT commands
are used. A comment command is also available for annotating
data. In the transfer of information from the data base to the
applications program, the replacement command is used. Data from
the data base is transferred by name to the input stream of the
technology programs. In the transfer of information from the
technology programs to the data base, a special extension of the
ADD command is employed. An interface file of ADD-like commands
can be generated by any-technology program for later processing
by the DLG Processor.

Construction and Maintenance of Data Bases

Data base construction and maintenace are accomplished by the use
of the three control directives, CREATE, UPDATE and USE. The
CREATE directive creates a new data base which is stored on a
temporary disk file by the same name. By permanently storing the
data on the disk file, the user may access the information at a
later time. The use of the UPDATE directive in conjunction with
previously created data bases, allows the user to modify the
data contained therein. The USE directive specifies a search
sequence of existing data bases.

The basic construction of data base.pages is similar but varies
in total size and specific characteristics which can be specified
by the user at creation time. Data bases consist of two distinct
parts, a free storage array of packed information where the
actual data is stored and a directory of names and pointers to
the data in the free storage array. The directory and the data
base have certain attributes which are assigned by the CREATE
directive.

'CREATE name, attribute = value, attribute = value'
(DATA)

Any or all of the attributes may be specified by the user as
follows. If not specified, the default values will be used.

9

Attributes Default Description

LTOTAL 1024 Total number of computer words allocated to
the specified data base.

NWORD 2 Number of computer words per.data base entry.

DIRLEN .47 Total number of directory entries allocated
to the data base.

LENDES 5 Number of words of descriptive information
associated with each entry in the data base.

Each entry in the directory is the name of a data eiement .or the
name of an array of data elements. Up to DIRLEN entries may be
made. Each entry may have a short description (LENDES-2) stored
with it. Each data element occupies NWORD computer words. In
establishing the size of the data base (LTOTAL), the user must
consider the total number of elements of data desired in the data
base, the directory length, the desired length of description and
the number of words per data element. If NELMT is the total num-
ber of elements, then:

LTOTAL = DIRLEN*(LENDES + 3) + NELMT*NWORD

After a data base is initially established, the UPDATE directive
may be used for adding or modifying the information contained
therein. The form of the directive is:

'UPDATE name'
(DATA)

Attribute parameters which are established once by the CREATE
directive may not be specified by the UPDATE directive. If the
use of the existing data base pages without modification is
desired, the directive:

'USE name,name,...'

is used. No attributes may be specified.

The basic control directive for entering information is the
ADD command. It permits a variable name and value or values to
be placed in the data base:

'ADD name=value,value,'

10

If the name is a new entry, any number of values may be added.
The number of values associated with the name when it is first
added is also the number of locations reserved in the data base
for that information. Later modifications to the information
can not create more data base space. The values may be real,
integer, hollerith or logical. A single ADD command may be used
for creating or updating many information sets.

'ADD Vl = 25., V2 = 30, V3 = ALPHA, V4 = .TRUE.,

A = 10., 15., 20., 25., I = 4, 5, 6

V4 = 5 * 0.,'

The data type is'defined by the input data type. Upon retrieval,
the data type is determined by the characteristics of the stored
data. The format of the ADD statement is patterned after the
FORTRAN NAMELIST feature and indeed has many of the same character-
istics and usage rules. For example, all name/value sets are
separated by commas.(,); all elemental values of an array are
separated by commas; the entire statement (command) is delimited.
In the case of NAMELIST, the delimiter is a.dollar ($) Sign; in
the case of ADD commands, the delimiter is (i). The rules for
entering hollerith information and multiple constants differ from

The ADD command has additional capability not present in NAM ELIST.
The value associated with the ADD name may be a previously defined
data base variable name:

ADD Vl = V2,

The effect of the above command is to transfer the information
associated with V2 to the data base space assigned to Vl. Vl
may or may not exist prior to the ADD command. If Vl did not
exist, space-will be created in the data base as the information
is transferred. If V1 did exist, then the information in Vl will
be replaced by the information in V2. The transfer of information
from one data base location to another is generally limited to
scalar quantities. The ADD command may also be used for combining
existing data base information with other data information or
constants:

'ADD V1 = V2 * V3,'

The operation illustrated above indicates a multiplication of the
two numbers on the right side of the equal (=) sign prior to

11

transferring the resulting information to the space allocated to
Vl. Any algebraic operator may be employed as follows:

+ addition

- subtraction

* multiplication

/ division

** exponentiation

More than one operation may be performed on the right side of
the equal (=) sign.

'ADD VI = V2 + V3 * K,'

Up to ten operations may be performed within a single ADD command.
The operations start from the equal sign and progress to the
right. The first variable is combined with the second. The re-
sult of that operation is combined-with the third. The result'
of that operation is combined with the fourth, etc. It should be
noted that the hierarchy or order of the operations does not con-
form to FORTRAN arithmetic. For example, in the above illustra-
tion, V3 is added to V2, then the sum is multiplied by K.

If the data base were so defined, the.directory may coritain space
for storing descriptive information. Depending on the value of
CREATE parameters, LENDES space is reserved for each name entered
equivalent to:

LENDES -2

The default value of 5 provides three computer words. (30 characters)
for descriptive information. The DEFINE command is used to
store the descriptive information in the directory:

'DEFINE name, description,'

DEFINE name = value, description,'

Name is a new or existing data base entry. If the name exists,
the description is added. If not, the name and description are
added. If the name is a new entry, then the value may be used
to reserve space in'the data base for data elements to be added
later. The absences of value on a new entry results in the
reservation of space for a single data element.

12

Construction of Partial Run Streams

There are three major considerations in the construction of de-
sign partial run streams:

1. Establish a design data base and control card data base
for use in the simulation.

2. Construct the desired design sequence.

3. Provide data base interfaces within the input data
sets for the technology programs.

Data bases are established at the beginning of the run or trans-
ferred from mass storage on an one-time basis using the techni-
ques discussed above. The design data base is defined first
by use of a CREATE, UPDATE or USE directive.

Execution of a Sequence of Technology Programs. - Now consider
the problem of sequential execution of one or more technology
programs using the EDIN system.

DLG preprocesses the data associated with each program and con-
structs a modified run stream. The preprocessing function will
be discussed later. The physical linkage between the control
card sequences of the various applications programs and DLG is
an Univac operation system utility program, @ADD. @ADD is
executed to link the technology program sequences just preproc-
essed by the DLG program. The linkage is continued by Exec 8
until an @FIN control statement is encountered. Details of the
operation of the executive system are contained in reference 1.

Conditional Branching. - The DLG processor can direct the trans-
fer of control forward or backward in the simulation stream by
the use of dynamic run stream modifications. This capability
is achieved by the following control card directive language
elements:

@SETC 'V2'

@TEST OP/'V1'

.@JUMP label

The @JUMP control statement establishes a label name in the
execution sequence where control may be skipped to. The @SETC
control statement establishes a data base value in a special
system register which is tested by the @TEST control statement
to determine if the @JUMP control statement should be processed.

13

The combination of the DLG Processor functions and the Exec 8
dynamic run stream modification capabilities permit a complicated
system of analysis loops to be constructed for satisfying a
variety of matching constraints.

The @TEST employed provides a standard set of. tests on the vari-
able set by the @SETC control statement:

@TEST TG/Value for (Vl > V2).

@TEST TLE/Value for (Vl < V2)

@TEST TE/Value for (Vl = V2)

@TEST TNE/Value for (Vl $ V2)

As noted previously Vl and V2 are constants or variables con-
structed in the design data base through use of the ADD command
or generated by any technology program in the synthesis and
passed to the design data base.

Retrieval of Design Information

The retrieval of design information from the data base is
accomplished by two basic control directives:

1. Replacement Directives.

2. INSERT Directives.

The control directives are strategically placed into the
technology program input data sets. The augmented data sets
form skeletonized input for the technology programs. Each data
set is headed by UPDATE or USE control directives corresponding
to the appropriate data base pages.

Upon execution of the DLG Processor, the data sets are scanned
for control directives delimited by apostrophe pairs (') for
identification. Each encounter with delimited information
causes DLG to perform the indicated replacement or insertion
action. The result of all encounters within the skeletonized
input for each technology program is a modified partial run
stream which can be merged with the run stream through the @ADD
control statement.

Replacement Command. - Data base information may be entered into
the technology program data sets by means of delimited data base
variable names entered in the precise location where the re-
quested data is to be placed. The delimiters define the field
width for simple replacement (i.e. a single data element). The

14

DLG processor will replace the variable name and delimiters by
its data base value and rewrite the card image in the modified
run stream. Input formats such as NAMELIST-like inputs and
rigidly formatted input can be accommodated by the procedure.
For example, in a true NAMELIST input, a data base variable
would be entered as follows:

NAME1 = 'Vl ',

NAMI is the name of the NAIELIST variable. Vl is the data base
name. The delimiters specify the field width to be employed in
replacing the data base name with the corresponding data base
value. Similarly.for a formatted input where data normally
appears on a card within a specified range of columns, the data
base replacement procedure is simply:

'VI

The delimiters are placed at the appropriate card columns defining
the field for the data element. The data base name is placed with-
in the defined field adjacent to the first delimiter.

Additional capability is available when namelist input is used
by the technology program. Entire arrays may be transferred to
the input stream using the following .procedure:

NAME = 'VARRAY'

where VARRAY is a data base array name. If the data in VARRAY
contains more data than can fit on one card record, additional
'cards' are created and placed in the modified input stream to
accommodate the excess data.

Data base variables and constants may be combined much like the
capability described for the ADD command above. For example, the
operation:

'Vl * V2'

illustrates how the product of Vl and V2 may be used as the re-
placement value of data base variable. The product never resides
in the data base but-only in the modified input stream. Vl must
be a rdata hnae vari able name but V2 mav be a data base variable

1or cSa or tha on arith.mtic operatin ma , erfrmed

within the delimiters:

'Vl + V2 * V3'

Up to ten operations may be performed within a single command.
The hierarchy of operations is the same as that described for
the ADD command.

15

In general, array elements may also be used in the replacement
command:

'Vl(n)'

where n is a data base variable, or

'V1(5) * V2(6)'

One exception from this capability is in dealing with the
first element of an array:

'v(1)'

The above command specifies the replacement of an entire data
base array and is therefore not an acceptable command for
replacing the first element of an array. The dilemma may be
avoided by use of the following two cards:

'ADD NEW = Vl(1)'

'NEW'

The ADD command defines a new data base variable which will con-
tain the element Vl(1). The replacement command will place the
variable NEW (i.e. Vl(1)) in the modified input stream. In
general, all ADD command capability described under data base
construction is applicable when placed in the skeletonized
element of a partial run stream. The 'ADD command instructions
are performed but the 'card' which contains the command is not
transferred to the modified input stream.

A special feature of the replacement command is the element-by-
element combination of entire arrays or the combination of arrayswith constants. As an illustration, consider the example:

'Vl * V2'

where the data base variables Vl and V2 are arrays. The abovecommand specifies the element-by-element multiplication of the
arrays. If on arra- h 4 f4-r c"t than the other, the 4 -m
bininig of ele~mniLs uAses aftel. the siorter array i ezh ausiLedand the rest of the longer array remains unchanged. The variable
V2 may be a constant or data base name. Multiple operations may
be performed using the hierarchical rules described above.

Insert Command. - Unlike the replacement command which extractsinformation from the design data base, the INSERT command trans-fers information sequentially from a formatted data card file.
Starting and stopping positions within the file may be specified
as follows:

16

'INSERT namel = n/m, name2 = j/k'

The effect of the command is to search the named system files,
namel and name2, for integer card numbers n through m and j
through k.. If the card numbers are omitted, the entire named
file is transferred to the modified input stream. The end-of-
file may be specified for the named file by replacing m or k with
the character string, EOF. The card containing the INSERT com-
mand is not transferred to the modified input stream.

Comment Command. - In addition to previously described commands,
there exists a special "command" for identifying data. The for-
mat is:

'. comment'

No action is performed as a result of this command. It is useful
only as an identifier for other data. For example, consider a
technology program which uses formatted input (i.e. numbers with
no identifiers or names associated with them). The comment com-
mand may be used to identify the data elements within the input
data stream. The effect of processing this command through DLG
is simply the replacement of the command with blanks. If the
resulting card image is entirely blank, then the card is not
transferred to the modified input stream.

Report Generation

A special feature of the ODINEX program is its ability to produce
user generated report formats augmented with data base informa-
tion. The report generator is applied in the following manner.

The report data is formatted by the user to provide any descrip-
tive information desired. The report data may contain data base
information through the use of the communication commands describ-
ed above. One example of card image in the report might read:

WEIGHT OF THE SYSTEM IS 'WGT' POUNDS

In the above illustration, WGT is a data base variable name. The
DLG Processor replaces the data base name and delimiter 'WGT' with
the information stored in the data base. The report is printed
through the normal computer output channels. The insertion of a
report in the simulation stream does not effect the normal sequence
of events for the simulation. The report may contain carriage
control characters in column 1 of the report data cards.

1 - Eject a page before printing.

17

0 - Skip a line before print

Any number of reports may be generated during a simulation. The
format of the individual reports is tailored to the needs of the
particular study. Once the format is established, it can become
a permanent part of the simulation stream. Any of the features
of the DLG language, including scaling and adding data base infor-
mation, are used in a completely free field report format.

Technology Module Interface Package

The communication of information from a technology program to
the EDIN data base generally requires modification of the
applications program. This modification is usually trivial and
requires little programming knowledge to accomplish. The objec-
tive of the modification is to create a special file of informa-
tion.which contains a format suitable for reading by the DLG
processor. The information is placed on the special file by
the technology program. The file is later integrated by the DLG
for possible placement of the information into the EDIN data
base.*

A series of four routines for printing the common types of data
in a format readable by DLG are available. They may be called
at any point in the calculation sequence for generating EDIN
output. The format simulates the control directives format used
in the DLG processor.

ADDREL - For printing real variables and arrays.

ADDINT - For printing integer variables and arrays.

ADDHOL - For printing Hollerith variables and arrays.

ADDLOG - For printing Logical variables and arrays.

The output is similar to the format of NAMELIST for one variable
name only with any number of associated values. Each subroutine
has the same calling sequence characterized as follows:

CALL ADDREL (LU, NAME, NUM, VALUE)

LU - Logical unit or special output file.

NAME - Desired name chosen by the analyst/programmer.
It may be a stored name set by a Fortran data
statement or can be set in the calling sequence
as nHname.

18

NUM - Number of values in the array. For a single
variable NUM=1.

VALUE - Internal variable or array name (starting
location).

The subroutines for the other variable types have the same calling
sequence. The primary difference among them is the format used
for writing the variables and the special output file. Each
output is a DLG control directive format. The name associated
with the directive is set by a data statement in the individual
subroutines. The data statement may be set at the time the
technology program is modified. Usually it is desirable to use
a.name which is reminiscent of the application program name.
The selected name may be precisely the same as the acronym used
to execute the application program in EDIN. The reason for
such a choice is that the directive name is stored in the EDIN
data base. A print of the data base prints the last directive
which updated each variable in the data base.

For most technology programs, the use of the software described
above is adequate. However, certain programs generate data
base information in a Fortran "DO LOOP." In these instances,
the package (by itself) can not satisfy the EDIN requirement
of separate names for different data elements and arrays.

The most convenient way to make this program and others of
this type compatible with EDIN is to provide some name-genera-
ting capability with the applications. program. Function sub-
routines which provide this capability can be called as
illustrated below:

NAMGEN (NAME, K, J)

NAME = The desired root name.

I = Concatenated number occupying the first one or
two BCD.character positions beyond the root
name.

J = Concatenated number occupying the second one
or two BCD character positions beyond the root
name.

An example would be:

.NAM=NAMGEN (4HNAME,1,2)

In the above illustration, the name NAME would be extended
by the BCD characters 1 and 2 concatenated to it and stored
in NAM.

19

NAM=6HNAMEl2

A maximum of 6 characters may be generated. This limit is
imposed by the word size limit for EDIN data base names.

Usually the NAMGEN function is used in conjunction with the
NAMELIST simulator described above in the following manner:

CALL ADDREL(LU,NAMGEN (NAME,I,J),NUM,VALUE)

In the illustration, the name is generated within the
calling sequence of the subroutine which prints the simu-
lated namelist for the generated name.

PROGRAM UTILIZATION

DLG Usage

Control Statement.-

@DLG.DLG,options lfn.eltl,lfn.elt2

Option Specifications. -

I Source input will follow the processor card.
Source output will be placed in eltl.

L Source input data will be listed.

O Source output data will be listed.

D Card cracking information will be listed.

E Solicitation and result of directives will be printed.

S List interrupt mode will be invoked.

M New data base files will be generated with this
execution..

-B Build option will be invoked. This option specifies
that all data directives of the form:

'name name=value---

or

20

$name name=value---

This will permit the addition of data to the data base
regardless of the directive name. Otherwise, only
those data base variable names, which.were previously
defined in the data base, will be updated unless the
data directive name is ADD or DEFINE.

The B option may not be invoked via the "ON" command.
If desired, it must be present on the processor call
card.

Syntax Definition. -

name .Must be six (6) or less alphanumeric characters
ahd begin with an alphabetical character.

'(quote The DLG delimiter. Strings that occur between
or pairs of delimiters will be processed by DLG.
prime) Strings external to primes will be passed "as is"

into the output element.

The underline on a command indicates an optional
character string which may be used as a directive.

value Indicates a data base value in real, integer or
hollerith format.

i,j,k Indicates integer constants used in the directives.

elt Exec 8 file element name in program file format.

Ifn Exec 8 logical file name in system data format.

text Textual information.

I J Indicates optional items on the line.

21

Descriptions of Control Directives. -

'ADD name' - Specifies that information will be added to data
base.

'ADD name=value'

'ADD name=name'

'ADD name=value,value,---'

'ADD name=name,name,---'

'ADD name=name op name, name op value,---'

+ Add

- Subtract

where op = / Divide

* Multiply

** Exponentiation

'CHANGE number=value' - Using the integer number 'number' as an
index into the master common block, IDILOG, the current value
is replaced by 'value.'

'COMMENT ' - This is a null card and is discarded by DLG.

'CREATE name,DIRLEN=number,LENDES=number,LTOTAL=number' - The data
of name 'name' is brought into existence on the data base file.
Optional parameters are DIRLEN - the directory length (This
should be a prime number.).

LENDES - Length in computer words of the description.

LTOTAL - Total size, in computer words, reserved for the
data base.

'CHANGE' -

Example 'CHANGE 27=3'

Location 27 of the common block IDILOG will have its value
replaced by an integer 3.

'COMMENT' - A null card. The delimited field is removed from
the card. If the resulting card is BLANK, the card will be re-
moved from the run stream.

'CSF @ Control Statement' - Specifies that an execution control
statement will be processed using the standard CSF$ package. The
following control statements may be used:

22

@ADD @CKPT @RSPAR

@ASG @FREE @RSTRT

@BRKPT @LOG @START

@CAT @MODE @SYM

@CKPAR @QUAL @USE

Example:

'CSF @USE 25, DBASE'

'CSF @ADD DUSEFIL.DLOG'

'CSF @QUAL B'

'DEFINE name=value,text' - Stores a textual description with
the name in the data base directory. If the name is a new
directory entry, the value is the number of data base entries
allotted. Existing data is unaffected and new data is not added.

'DEFINE A, LETTER 1' - Stores the description, LETTER 1,
with the name A.

'DEFINE B=10, BARRAY' - Stores the description, BARRAY,
with the variable name B and allots
10 data base entries for B.

'FORMAT name=value/value, (Fortran compatible format statement)'
Extracts freely stored data from the data base and places into
the output elements in accordance with the given format.

'FORMAT A=6/3,(1X,3Fl5.3)'

The six items of A are output into the named element, 3
on a line through the (lX,3Fl5.3) format.

'INSERT name=value/value' - Specifies that binary coded informa-
tion the SDF file name will be placed in the source output
element in 14A6 format.

'INSERT A' - Entire file of data in A will be transferred
to source output element.

'INSERT B=5-13' - Insert data from B from records 5 through
23.

'INSERT C=5*EOF' - Insert records from file C records 5
to the end-of-file.

23

Other Examples - 'INSERT A,B=5-23, C=5*EOF'

'name' - Specifies a simple replacement of named information
with data base parameters or arrays.

'REAL' Real parameter or array.

'INTEG' Integer parameter or array.
'HOLITH' Hollerith parameter or array.

'LOGICL' Logical parameter or array.
'ARRAY(j)' Real or integer element of an array, j must

be a constant greater than 1. A value of
j=l will cause the transfer of all of j.

'ON name,name---' - Mode activation directive.

'OFF name,name---' - Mode suppression directive.

P or PAGDMP Print card cracking information.

O or OUTDMP List logical file 1 data.

N or INDUMP List source output element.

C or CONTINUE Activate continuation card option.

L or LIST List source input information.

S or SPLIT Interrupt mode.

E or EDIT Edit mode (demand response to printer).

'PRINT name' - Specifies that data information will be printed.

'PRINT name=A,Z' Print all information in name.
'PRINT name=n,m' Print entries n through m alphabetically.
'PRINT name' Directory and first data base entry

of named data base.
'PRINT' Directory and first data base entry of

current 'USE' assigned data bases.

'USE'-

'USE A,B,C' - The data bases named will be circularly
-searched in the order given for variables used in replace-
ments. All will be searched once before a NO FIND is de-
clared. It should be noted that this command may cause
very excessive SUP changes if not carefully used.

24

'UPDATE name' - Specifies that the named data base will be up-
dated with the information which follows:

'UPDATE A' - Specifies that the data base A will be updated
with the data which follows.

Examples

Example 1. - Data base creation.

@fn.DLG,GI .RPT

'CREATE AERO,LTOTAL=4000,DIRLEN=501'

INITIALIZATION
DATA

'CREATE STR,LTOTAL=6000,DIRLEN=557'

NITIALIZATION]
DATA

'CREATE MASSP,LTOTAL=9167,DIRLEN=487,LENDES=7'

NITIALIZATION

DATA

'PRINT'

Example 2. - Data for DLG is in input stream.

@DLG,I PANDATA

$IPANEL IGEOM=5,$ 4 Element PANDATA Constructed
'UPDATE DBASE' from this Data.

$INLIPS

THETOX='DBARA' *,DBARA from Data Base.

SEND

@ASG,T 8.

@ASG,T 11.

@XQT PANEL.OPANEL

@ADD PAN DATA

25

@USE 14,NMLIST

@fn.DLG,I MAIN

NAMELIST/OUT/C 4 --- Element MAIN constructed
'UPDATE DBASE' from this data.

CALL GETA(A) * GETA is an elemeht of BRARY.

B = 'SMAXIS' * SMAXIS from data base

C = A**2+B**2

WRITE(14,OUT) * Data on 14 goes to data base.
LEND on next execution of @fn.DLG.

@FOR MAIN

@MAP,I DUM,MYPGM

IN MAIN

LIB BRARY O BRARY contains GETA
END

@XQT MYPGM

Example 3. - Data for DLG stored in element.

@fn.DLG NAME1,NAME2

@XQT PGM

@ADD NAME2

NAME1 Element 4 Element NAME2 con-
structed from this

'UPDATE DBASE' data.
'DATA'

@fn.DLG NAME3,NAME4

@ADD NAME4

NAME3 Element -- Element NAME4 con-
structed from this@XQT PGM
data.

'UPDATE DBASE'
'DATA'

26

Example 4. - Linked Simulation.

@ASG,A DATA7 0 Assign permanent data base.

@COPY DATA7,DBASE

@fn.DLG EDIN.SIM,MODIN

@ADD MODIN

EDIN.SIM Element 4--Element MODIN constructed from
this data.

@XQT PG1

'UPDATE DBASE'
'DATA'

@fn.DLG LUI.RPT,SUMRY

@ADD SUMRY
LUI.PRT Element 4 Element SUMRY

constructed
SUMMARY REPORT from this

'UPDATE DBASE' element.
'DATA'

@fn.DLG PIX,MODIN

@T.OIMAGE

@ADD MODIN

Example 5. - Generation of a data base status report.

BATCH MODE:

@USE DBASE,DATA7 *'Assign permanent data base.

@fn.DLG,M EDIN.STATUS,STATUS

EDIN.STATUS Element

STATUS REPORT

'UPDATE DBASE'
'DATA'

27

DEMAND MODE:

@fn.DLG,EI HISTORY
>'UPDATE DBASE'
> 'NAME' * USER INPUT

valuel *DLG RESPONSE

> 'ADD A=VALUE *USER INPUT HISTORY Element

> B=V2' * USER INPUT
valuel

> 'A ' 'B ' * USER INPUT
value2 value3-

value2 value3 *DLG RESPONSE

> @EOF *USER INPUT

NOTE: The character (>) is used to denote a demand read request.

Example 6. - Conditional looping by combining the capabilities
of EX8 and the DLG processor.

@fn.DLG LOOPELT,MODIN

@ADD MODIN.

@fn.DLG LOOPELT,MODIN

@ADD MODIN

@fn.DLG LOOPELT,MODIN

@ADD MODIN

@STOP:

LOOPELT Element *--Element MODIN con-
'UPDATE DBASE' structed from this
@fn.DLG A,AA , data.

@XQT PGMA

@ADD AA 4-

@fn.DLG B,BB-

@XQT PGMB O SET CONVG

@ADD BB 4-

@SETC 'CONVG'

@TEST TE/1

@JUMP STOP

28

CONCLUDING REMARKS

The DLG Processor has been developed particularily for the 1110
Exec 8 operating system and other computers with similar file
manipulation capabilities. The processor operates on data
structures at the same level (element level) as the Exec 8
utility processors and language processors. Further, the DLG
was designed to take full advantage of existing capabilities.
Beyond that, the DLG Processor extends current capabilities by
permitting parameterization of any specified data element with
information requests which can be satisfied by the DLG Processor
at execution time from information stored in a stratified data
base also accessible to the processor.

Data Base. - The-data base is structured to permit the storage
and retrieval of information of a parametric or matrix nature
in real, integer, hollerith or logical type. The data base
structures can be free data base structures, random access and
tree structures.

Design Simulations. - The generation of a.computer aided de-
sign study or simulation lcoks pretty much like a normal EX8
run stream. The execution of the DLG processor is interjected
as required whenever a data base maintenance or retrieval
function is indicated. Design loops are generated by the con-
struction of partial run streams (@ADD files), which can be
repetitively executed in an automated manner until the con-
vergence criteria, (usually a data base variable) is met.
All programs have access to the data base through the DLG
processor. Therefore, any program (and/or the user) may con-
trol the convergence criteria.

Comparison with other Processors. - The use of the DLG processor
is much like any of the language processors or utility processors
on the EX8 system. Input data can immediately follow the pro-
cessor card or can come from the source input element. The
processed input is written into the source output element.
The DLG processor contains a control directive language some-
what analogous to the @ED processor language but the control
directives are designed for.the purpose of maintaining data
structures of various types rather than strictly card images.
The directive language is patterned after the language structure
in the DIALOG Executive System but with some significant
differences and a considerable expansion in capability.

29

For example, entire data structures can now be searched, altered
and generally manipulated by user commands. Data bases can be
completely restructured at execution time to meet access require-
ments of a particular situation.

Compatible Developments. - The DLG processor is upward compat-
ible with the GTM processor. GTM structured files can be read,
displayed and reformatted by the DLG processor for other uses.
Arbitrarily generated sequential binary file structures can
also be interpreted and manipulated by DLG if the user knows
the file format.

Reports of any nature, which conform to the element data format,
can be generated, printed and permanently or temporarily stored
on the mass storage media of the 1110. Another processor called
CIPHER (reference 1) greatly expands the capabilities which now
exist for report generation. The design of CIPHER permits com-
patible data handling with the DLG and GTM processors and indeed
will operate upon the same data bases.

The existing report capability has been expanded to permit online
edit and data base manipulation. The edit capability provides
both demand response from DLG while simultaneously generating
a permanently stored report.

30

REFERENCES

. Glatt, C. R., Hirsch, G. N., Alford, G. E. Colquitt, W. N.
and Reiners, S. J.: The Engineering Design Integrattion
(EDIN) System. Aerophysics Research Corporation. JTN-
11. 1974.

31

